Research on Welding Process and Application of Automatic Tool Changer System for Carbon Fiber Composite Impellers

Contents

Carbon Fiber Reinforced Polymer (CFRP) has been widely applied in aerospace, high-end equipment manufacturing industry, rail transit, new energy, and other fields due to its extremely high specific strength, corrosion resistance, and superior thermal stability. Especially in high-performance impeller production, CFRP maximizes the efficiency of high-speed rotating components such as turbines and propellers by significantly reducing weight while encouraging mechanical properties. However, its joining techniques and cutting operations continue to be plagued by drawbacks such as low welding compatibility, high processing complexity, and severe tool wear.

Application Prospects and Technical Bottlenecks of Carbon Fiber Composite Impellers

With continuing strengthening of lightweight design concepts, carbon fiber composite materials, being the “structural backbone” in high-end manufacturing, are an irreplaceable pillar in technical apparatus such as aviation propulsion equipment, deep-sea unmanned vessels, and electric aircraft. Particularly, carbon fiber impellers have a significant ability to minimize the weight of rotating components with the assurance of structural strength, improving system response speed and operation stability. However, in my research and engineering work, I have deeply realized that the complexity of carbon fiber composite material in actual processing and assembly is far deeper than metal materials.

On one hand, the anisotropic and delamination characteristics of the carbon fiber/resin matrix composite structure impose stricter requirements for welding temperature, stress transfer, and interfacial coupling performance. In contrast, its processing is by complex five-axis simultaneous motions, various cutting tools, and automatic tool change techniques, requiring very high manufacturing equipment and control system intelligence. So this paper attempts to (cut in) from two sides of welding process and automatic tool changer system and elaborates on the construction path of high-quality and high-efficiency manufacturing capability for CFRP impellers in the new manufacturing environment.

Research on Welding Process of Carbon Fiber Composite Impellers

With the extensive use of Carbon Fiber Reinforced Polymer (CFRP) in aerospace, energy, and advanced manufacturing industries, its forming and joining technology in intricate structure components like impellers has also drawn broader and broader interest. In particular for the realization of high-strength integrated structures, how to achieve high-quality welding connections of split preforms has become a crucial link to realize lightweight and efficient design. But as opposed to metals, CFRP does not use fusibility, and welding is in fact a process of “interfacial heating-softening-fusion” rather than the traditional “molten pool-solidification” process, and this requires extremely high process demands on the selection of the welding methods as well as process control.

Selection and Adaptability Analysis of Welding Methods

Since carbon fiber composites are not fusible, the fusion welding technologies cannot be utilized for joining. For common engineering applications, the most widely used welding or joining methods are laser-assisted welding, thermal rivet welding, resistance welding, and ultrasonic welding. According to my process test experience with the experimental facility, different processes are differently adaptable:

  • Laser-assisted Welding: Suitable for the welding of CFRP to dissimilar metals such as titanium alloys or aluminum alloys. It possesses focal heat input and thin welds, suitable for precision components, but must solve the problem of interfacial crack due to disparity in thermal expansion coefficients.
  • Ultrasonic Welding: Particularly applied to the quick assembly of thermoplastic matrices. It performs clean and high-speed welding through high-frequency vibration heating, a major direction of technical development in future large-scale production through automation.
  • Resistance Welding and Thermal Rivet Connection: Mainly used for local reinforcement or structural support, and excellent structural integrity and low integration complexity with automated tools.

Welding Quality Control Strategies

Key parameters affecting welding quality are temperature, pressure, time, and interface treatment. The heat input during welding needs to be strictly controlled below the glass transition temperature (Tg) of the matrix resin to avoid ablation of the carbon fiber structure or debonding of the matrix. Following experiment and finite element simulation results, I recommend that the temperature during welding should be controlled at 20℃ below Tg, the pressure during welding approximately 0.2 MPa, and the time at 15 seconds to avoid interfacial stress concentration.

In addition, interface grinding and plasma activation treatment have been confirmed to further improve interfacial bonding strength. Techniques of post-welding inspection mainly include ultrasonic C-scan, X-ray CT, and infrared thermography, which are utilized to detect precisely internal defects, air holes, interlayer delamination, and other issues to ensure structural safety.

System Integration and Optimization of Automatic Tool Changer (ATC) System in Impeller Machining

In processing complex impellers, tool management and tool change efficiency are typically the bottleneck factors of process and control cycle time and surface quality control. Especially in the multi-process situation of processing carbon fiber composite and different metals alternately, the processing route involves a large number of tools of various types, with an ultra-high frequency of tool change. The traditional manual intervention tool change method is difficult to (compete). Therefore, to implement an Automatic Tool Changer (ATC) system and establish a “tool closed-loop” system highly integrated with an intelligent control system has become a key technical tendency in today’s impeller manufacturing business.

Composition of ATC System and Intelligent Control Strategies

The automatic tool changer system consists of a tool magazine, tool change manipulator, identification system, and its integration with the CNC system. For dealing with intricate curved surfaces and alternating layers of composite materials, tool varieties are large numbers and there are lots of tool changes, and the efficiency of traditional manual tool changing is extremely low. My point is that bringing in an intelligent ATC system is a significant technical breakthrough to shatter the processing bottleneck of highly intricate impellers.

New ATC systems embrace dynamic tool scheduling based on processing paths and incorporate life prediction models for tool replacement. For example, PCD ball-end mills are used for processing carbon fiber layers, ceramic drills for processing holes, and precise conversion between varied tools can be completed in 2 seconds, which greatly improves processing continuity and surface quality.

Typical Applications in CFRP Impeller Machining

Using a particular type of five-axis machining center as an example, its ATC system is equipped with a tool capacity of 40 with the cooperation of a Fanuc 30i-B numerical control system and a laser identification device, in which path self-adaptation function, mis-tool change early warning function, and residual tool identification function are implemented. In a traditional CFRP impeller machining process, the average quantity of tool changes exceeds 15 times. The ATC system reduces the tool change time from 20% of the processing time to 5%, and the processing efficiency is increased by approximately 35%.

In addition, through interfacing with the MES (Manufacturing Execution System), the ATC system can also realize online recording and statistic of tool change data, providing data support for subsequent optimization of processing technology and tool combination selection.

Next-generation carbon fiber composite impellers will be produced more digitally and intelligently. The in-depth integration of welding and ATC systems is the cornerstone for constructing an extremely flexible platform for manufacturing. According to my view, the following directions are deserving of intensive study:

  • Robot + Laser Multi-angle Welding Linkage System: Integrating visual recognition technology, laser positioning, and precise control can achieve high-quality automatic welding of intricate curved surface structures;
  • Integration of ATC + AI Vision System: Deployment of tool wear forecasting and real-time path adjustment through image recognition;
  • Digital Twin System: Supporting process simulation, error checking, and processing optimization in a virtual system;
  • Development of High-performance Tool Materials: Such as nano-coated PCBN tools and composite function tools will be the key factors to improve processing quality.

Conclusion

Carbon fiber composite impellers are the trend of development for light and high-performance structural parts, and the manufacturing technology of them is gradually changing from an “test-validation” type to an “efficient-intelligent” type. From the welding perspective, the logical utilization of new joining processes such as laser joining and ultrasonic joining and precise regulation of thermal control parameters have greatly improved structural integrity and service life; from the process perspective, the arrival of ATC systems not only optimized the process steps but also provided technical assistance for realizing unmanned and continuous production.

Try Kesu Now!

Upload your CAD files to get one on one support