Process Advantages of Multi-Axis Linkage Equipment in Machining Bidirectional Curved Impellers

Contents

Bidirectional curved impellers are widely used in high-performance fluid machinery such as aero-engines, gas turbines, and special compressors. Their geometrical shapes are complex, with blades usually displaying both radial bending and circumferential torsion. Traditional machining methods have obvious disadvantages in machining trajectories, contact of cutting tools, and surface quality control. Multi-axis linkage CNC equipment, especially five-axis linkage machining centers, has become the key technology to solve the machining problems of such complex structures due to its multi-degree-of-freedom synchronous control capability.

Introduction

As the core component of fluid power devices, the geometric accuracy and surface integrity of impellers directly determine the performance of the entire machine. As power equipment develops toward high efficiency and light weight, impeller designs develop further into more and more advanced three-dimensional free-form shapes. Specifically for those bidirectional bending impellers, their blades like to bend in the radial direction and twist towards the direction of blade height at the same time, making them far too difficult to machine. This complex geometry requires not only high-precision cutting but also poses unprecedented challenges in tool paths, contact quality, and surface integrity during cutting.

Traditional three-axis or four-axis CNC machine tools are incapable of addressing the requirements of efficient and high-precision manufacturing when cutting such impellers due to tool posture limitations, machining blind spots, and severe interference. Particularly, frequent tool substitution and clamping processes in machining will cause positioning errors that have a direct impact on end machining precision. Multi-axis connection machines, especially five-axis connection machining systems, can adaptively meet the machining requirements of complex curved surface structures by synchronously adjusting the spatial posture of the tool, and it has become the primary equipment for the machining difficulty of bidirectional curved impellers.

Machining Difficulties of Bidirectional Curved Impellers

As general compound free-form surface parts, bidirectional curved impellers bring extremely high machining difficulties with their intrinsic properties. In tool control, path planning, or equipment adjustment, overcoming the shortcoming of traditional machining methods is required. The next four aspects are the necessary challenges in the current machining process:

Difficulty in Planning Machining Paths for Complex Spatial Surfaces

The curved blades of bidirectional curved impellers typically possess three-dimensional gradient surfaces with non-linear variations, including multi-curvature variation and irregular surface junctions. These types of geometric models possess extremely stringent requirements for traditional CNC path planning. Especially, when the tool is always kept pointing in the direction of the surface normal, path calculation greatly increases and the posture of the tool needs dynamic adjustment in an attempt to prevent over-cutting, cutting loss, and reduction of the quality of the surface.

Poor Accessibility in Blade Root Transition Zones

The impeller blade attachment root section is narrow and small and is a common “hidden machining region”. Conventional tools in the region are extremely difficult to cut in smoothly, prone to tool interference or suspended cutting and causing machining defects, local residual material or structural imperfections. Efficient machining of this region requires high-degree-of-freedom machines and purposeful tool posture control strategies.

High Machining Risks in High-Curvature Reverse Bending Areas

Some bidirectional curved blades have reverse bending configurations, namely, the blades have negative curvature or S-shaped reverse surfaces in the flow or radial direction. They are prone to “tool biting” during machining, especially when tool entry angle is not regulated. The side face of the tool is prone to abnormal cutting force with ease causing scratches, surface cracking, or early tool failure. This requires stricter tool path simulation and on-line posture adjustment demands.

Frequent Posture Switching and Difficulty in Interference Control

Due to small distances between blades and significant curvature variation, the tool has to frequently change posture in cutting to accommodate diverse areas and prevent collision. Chasing posture too frequently not only imposes stringent equipment requirements for dynamic response capability of complexity but also presents difficult logical judgment demands on tool path programming. Once the posture transition is computed improperly, it is (highly prone to) provoke collision danger or path discontinuity.

Analysis of Process Advantages of Multi-Axis Linkage Equipment

Due to the widespread application of high-performance complex structure parts (such as hyperboloid impellers and specially shaped flow-guiding components), traditional three-axis machining processes more and more show limitations in angle coverage, machining consistency, and efficiency. Multi-axis linkage machining centers, especially five-axis linkage CNC machining centers, are the core machines of high-end manufacturing nowadays due to their higher geometric degrees of freedom and better dynamic response capability. The ensuing process advantages clearly demonstrate their intrinsic value in machining intricate impeller parts:

Significantly Enhanced Multi-Angle Continuous Machining Capability

The five-axis linkage machine realizes continuous posture adjustment of the tool in three-dimensional space by synchronized motion of the turntable and spindle. Its multi-angle dynamic control capability enables it to complete continuous machining of many complex surfaces at once clamping, particularly blade structures with bidirectional curvature. For example, in aerospace impeller machining, three- or four-clamping operations on traditional three-axis machines can be carried out with a single operation on five-axis machines, not only significantly shortening the process chain but also actually eliminating error accumulation in clamping and generally improving overall geometric accuracy and uniformity of parts.

Tools Always Maintain the Optimal Cutting Angle

One of the main advantages of five-axis linkage technology is that it can always make the tool pass along the workpiece surface normal direction during machining, to achieve “(orthogonal cutting)”. This dynamic angular control not only can greatly reduce the cutting force and lateral force to enhance cutting stability but also significantly improve the surface quality and tool life. For complex shapes like continuously curved change impellers and irregular wall thickness, the orthogonal cutting state can significantly reduce defects in machining such as tool marks, burrs, and micro-vibration patterns, ensuring an important guarantee of high-precision surface integrity.

Avoidance of Machining Interference and Tool Jumping

In traditional machining, areas such as the root of impeller blade and nearby channels are (highly prone to) rework risk due to tool shank interference or tool jumping. Five-axis linkage machines can incorporate collision detection and trajectory simulation functions within the CAM system to conduct interference prediction and posture optimization adjustment at the tool path generation stage, thus lowering manual judgment errors. This intelligent machining avoids not only improving the degree of machining automation but also significantly reducing rework time and downtime, thus overall machining efficiency is increased.

Support for Long-Overhang Tool Machining and Control of Rigidity Loss

For structures such as deep cavities, narrow slots, or spiral inner grooves, machining is often achieved by using long-overhang tools. In three-axis machines, extended overhang is extremely easy to induce insufficient tool rigidity, thereby causing vibration and tool tip runout. Five-axis linkage machine tools can adjust the spindle position in order to let the tool move towards the cutting zone in a more rational direction, in fact shortening the actual length of the overhang, thereby enhancing rigidity and machining stability. Such a function is extremely significant in maintaining machining accuracy of complex contour zones.

Improvement of Overall Machining Efficiency and Automation Level

Five-axis linkage machines are capable of realizing continuous machining of complex structural parts by intelligent path generation, dramatically reducing the time costs for tool changing, transfers, and multiple tool setting. Meanwhile, it also has a high level of automated control capability and can be combined with automatic workpiece exchange systems and tool management modules to achieve low-staff or unmanned machining processes. When it comes to the current market trend of multi-model, small-batch, and high-complicated production, five-axis machines have outstanding adaptability in response speed and beat control in production, becoming a crucial technical support in the field of high-end manufacturing.

Analysis of Typical Case Applications

When machining a Φ180 mm size titanium alloy bidirectional curved impeller in an aviation company, a five-axis linkage machining center brought important machining benefits over conventional four-axis machining machines. The size of the impeller was Φ180 mm, blade height 60 mm, and number of blades was 18. In machining, five-axis linkage machine tool decreased the machining time and improved significantly the surface quality through the elimination of the quantity of clampings and improvement of the machining accuracy. The following is a comparison of machining data:

Process IndexTraditional Four-Axis MachiningFive-Axis Linkage Machining Center
Number of Clampings≥3 times1 time
Total Machining Time per Piece13 hours6.5 hours
Average Blade Contour Error (mm)±0.05±0.015
Surface Roughness (Ra)1.6~3.2 μm0.8~1.2 μm
Number of Tool InterferencesMultiple manual avoidancesNone

The test results show that not only does the five-axis linkage machine significantly increase the machining efficiency but also achieve great improvement in accuracy and surface quality, which fully shows its superiority in bidirectional curved impeller machining.

Conclusion

Due to their complex geometric characteristics, bidirectional curved impellers have extremely high machining demands, and traditional machining tools have it hard to meet manufacturing goals of high accuracy and high consistency. Five-axis linkage CNC machine tools, especially multi-axis linkage machines, have become the principal machines for conquering the difficulties in machining such impellers by utilizing their strong spatial posture control capability, multi-surface continuous machining capability, and intelligent interference avoidance function.

Try Kesu Now!

Upload your CAD files to get one on one support