Practice of Full-Process Digital Management and Control for Impeller Manufacturing Based on MES System

Contents

With the rapid development of intelligent manufacturing, production management of high-precision parts such as impellers must also urgently be converted to digitization to improve the efficiency of production, quality of products, and traceability. As a key production management platform, the Manufacturing Execution System (MES) has also become a critical platform in driving full-process digital management and control for impeller manufacturing enterprises.

Introduction

Being one of the critical components of aero-engines, gas turbines, pump equipment, etc., the manufacturing process of impellers is exceedingly complex, involving cross-processing of different processes, equipment, and batches. Traditional models of production management are plagued by data fragmentation, man-made recording errors, and lagging feedback, which seriously restrict the establishment of production efficiency and quality. Specifically, in the production of high-precision and high-complexity parts like impellers, traditional management models fail to provide more demanding production standards.

The Manufacturing Execution System (MES) is the most important middle bridge of production planning and on-site execution that provides real-time management and control over workshop production processes. By acquiring data, offering information sharing, and incorporating feedback mechanisms, MES assists businesses in real-time monitoring of production progress, optimizing resource distribution, and enhancing production openness and flexible control. This article introduces the application effects of MES-based digital management and control in impeller manufacturing and elaborates on how the efficiency in production can be enhanced, quality control can be strengthened, and management procedures optimized.

Analysis of Impeller Manufacturing Process and Informatization Requirements

The impeller manufacturing process includes a number of complex processes from process design, blank control, CNC machining, surface treatment, inspection and measurement, to assembly. In the course of such a process, informatization requirements mainly emerge in the following aspects:

Process Preparation Stage

Process cards must be produced, tooling created, and process routes formulated. Standard manual processes can readily create lagging information transfer and onerous updating of processes.

Blank Management and Machining Stage

There are a number of chain links between casting, forging and finishing that include coordination of miscellaneous equipment and manpower. Without effective informatization tools, planning and action tend not to be coordinated, and process information is not traceable.

Surface Treatment and Quality Control Stage

Impellers require extremely high surface treatment conditions. It is difficult to trace the cause of defects once they have occurred, so it affects overall quality control.

Equipment and Performance Management Stage

Problems such as equipment failures, shutdowns, and man-hour wastage must be tracked in real-time and planned to a high level of fineness. If the management system lags, it readily leads to low equipment efficiency and inefficient production.

Therefore, the informatization requirements of impeller production focus on the openness of the manufacturing process, the accuracy of the traceability of quality, and scheduling equipment and labor effectively.

Deployment of MES System Functional Architecture in Impeller Manufacturing

As the impetus for the digitalization of impeller manufacturing, the Manufacturing Execution System (MES) with its key function to bridge the planning layer and execution layer is very critical. Especially in high-precision batch-variable impeller processing scenarios, the MES system not only needs to supply real-time production data collection and analysis assistance but also have the six elements of production of “man, machine, material, method, environment, and measurement” to form an intelligent, efficient, and traceable digital workshop. For these purposes, the MES system typically has the following key functional modules:

Production Planning Management Module

Being the starting point of the MES system, this module is mainly responsible for converting order information published by the ERP system into actual work order tasks. Based on order priority, machine load, and process routes, the system can perform intelligent scheduling and dynamically control the coupling of a number of processes. In coordinated impeller processing that incorporates rough machining, heat treatment, finishing, and inspection operations, MES facilitates graphical monitoring of work order progress through Gantt charts and other representations, ensuring consistency between planned realization and actuality, and aiding to minimize manual scheduling and rework risks significantly.

Process Execution Control Module

The process execution module directly addresses in-plant equipment and operators to ensure that each process is strictly executed in accordance with process rules. Process documents, CNC programs, fixtures, and inspection standards can be issued and version-controlled uniformly by using the MES system. As soon as the operator scans a code or swipe a card, the system will automatically load the current impeller product’s processing parameters and process cards to avoid misoperations or wrong installations. Meanwhile, the system captures real-time start/end time, operator, and equipment number of each process to create a full process history to implement fine-grained control of the entire manufacturing process.

Quality Process Management Module

Quality is the lifeblood of impeller manufacture. The MES system integrates measuring instruments (e.g., CMM, laser probes) and SPC statistical analysis software to record dimensional information, processing variations, and non-conformity information in real time. When detected results fall outside permissible tolerances, the system automatically warns, creates quality problem records, identifies responsible processes and equipment, and initiates rework operations or prevents non-conforming products from going to the next process. Furthermore, this module can track trends in key quality parameters to detect possible deviations in advance and create a proactive quality control system.

Equipment Data Acquisition and Monitoring Module

To raise equipment availability and response speed, the MES system connects CNC machines, testing machines, temperature control systems, etc., to the platform by the Industrial Internet of Things (IIoT) and collects status parameters such as spindle load, temperature fluctuations, operating time, and downtime reasons in real-time. The system automatically compiles OEE indicators from equipment operating data to assist managers with maintenance planning, equipment balancing, and power consumption analysis. This module is particularly critical to balancing production failure and forecasting failure in impeller processing with high-speed and multi-axis (multi-axis linkage) equipment.

Visual Management Module

Information transparency is one of the main features of digital manufacturing. Important indicators of ongoing production cycle, pass rate, machine status, and work order progress can be shown by the MES system through production dashboards or mobile kanbans. The managers can dynamically optimize the allocation of resources and find out the bottleneck processes without visiting the location. In case of delayed work orders or equipment alarms, for instance, the system sends automatic alerts to facilitate timely response by the managers, thus enhancing efficiency in decision-making as well as collaboration on-site.

Data Traceability and Analysis Module

To achieve full traceability of all impeller products from blank to shipment, MES technology integrates identification methods such as QR code or RFID into closed-loop record processing, inspection, and handling product data at each process. The system can automatically generate product history reports with process parameters, operation records, measuring data, and exception handling, providing strong support for follow-up quality analysis, customer complaint, and process improvement. More significantly, this module can be integrated with other PLM and QMS to bridge the design-manufacturing-quality closed-loop data chain.

Case Analysis of Digital Management and Control Practices

Taking a certain aviation precision impeller manufacturing workshop as a sample, the implementation of the MES system has brought the following primary changes:

  • Full-Process Visual Tracking: One-to-one binding of each impeller to production processes through one-off QR code, such as process, equipment, operator, quality inspection, etc., forWhole-process (full-process traceability). Once quality issues are present, it can identify accurately the fault process and operational divergence.
  • Transparent Collaboration in Processing: After the MES system is implemented in CNC machines, data such as spindle load and cutting temperature are transferred automatically, providing historical data support to quality inspectors to make it easy for them to identify the cause of quality issues.
  • Closed-Loop Quality Control: The system sends and receives signals to and from coordinate measuring machines, endoscopes, and other instruments to receive real-time testing data. If out-of-tolerance items are found, the system automatically starts the rework cycle and informs the responsible persons for inspection and adjustment in due time.
  • Improved Equipment Utilization: By tracking OEE metrics (availability, downtime, alarm rate, etc.), the MES system can identify equipment bottlenecks and maximize them for workshop managers. Statistics show that equipment utilization has been increased by an average of 12%.
  • Transparent Performance and Costs: The standard cycle and actual man-hours of every process are automatically tracked, and the system calculates process costs based on equipment utilization and labor usage, allowing for granular cost analysis by product model to assist enterprises in optimizing cost structures.

Conclusion

The implementation of whole-process digital management and control for impeller manufacturing in line with the MES system provides an organized platform of production management for impeller manufacturing enterprises, doing away with information barriers between production chains and realizing comprehensive management and control from process, quality to equipment. Through data-driven precision control, not only does it promote manufacturing efficiency and equipment usage but also optimize quality traceability and process control, which is a real step towards intelligent manufacturing. As the Industrial Internet, AI algorithms, and digital twins improve constantly in the future, the MES system will play an ever more pivotal role in the impeller manufacturing business, allowing companies to propel more efficient, more intelligent, and more sustainable production modes.

Try Kesu Now!

Upload your CAD files to get one on one support