Application of Hydraulic Measurement System in Efficiency Testing of Seawater Pump Impellers

Contents

With the development of marine resources increasingly deepening, seawater pumps, being key equipment, play a major part in ships, offshore platforms, and seawater desalination plants. The operating efficiency of the pump not only affects energy consumption efficiency but also relates to the stability and safety of the system. In these pumps, the hydraulic performance of the impeller has a direct influence on the pump efficiency. The correctness of the design and manufacture of the impeller needs to be verified by accurate testing measures, and the hydraulic measurement system, possessing high precision, high sensitivity, and favorable stability, has become one of the mainstream technologies for seawater pump impeller efficiency tests progressively.

Introduction

Traditional pump efficiency test methods are mainly divided into electric power methods or volume flow methods. Although the current methods are applicable under stable working conditions, it is difficult to guarantee their accuracy of measurement under complex seawater conditions and dynamic load conditions. The hydraulic measurement system can accurately measure the hydraulic power and shaft power of the pump by real-time monitoring of the pressure, flow, and temperature changes in the pump, providing a good basis for impeller performance analysis. Compared with the traditional measurement method, the hydraulic measurement system has higher sensitivity and applicability and is especially suitable for complex operating conditions such as high flow, low head, or corrosive media.

Testing Requirements and Challenges for Seawater Pump Impeller Efficiency

In modern marine engineering, ship power plants, and seawater desalination plants, as the critical energy conversion component, seawater pump impeller efficiency testing is not only related to energy consumption management and system performance evaluation but also directly affects the operational safety and service life of equipment. However, the seawater pump impeller efficiency test is faced with many engineering and environmental challenges, which put extremely high requirements on the stability, accuracy, and anti-interference of the measuring system.

Harsh Test of Working Condition Variability on Testing Adaptability

Seawater pumps are typically used in ocean environments, and their operating conditions are largely affected by environmental parameters such as temperature, salinity, density, and impurity content. These external parameters directly modify the seawater physical properties as well as dynamically upset the internal flow field and impeller load characteristics of the pump, causing appreciable fluctuation in the flow, pressure, and efficiency parameters during testing. In order to carry out accurate simulation and duplication of real working conditions, the hydraulic measurement system must have good environmental adaptability and guarantee the accuracy of measurements under the condition of changing medium parameter.

Severe Threat of Corrosive Media to Measurement Components

Seawater contains a high percentage of chlorides, sulfate ions, and microbial constituents, which are extremely corrosive with electrochemical activity. Under the conditions of long-term operation, if not properly protected by the measurement system, sensors tend to corrode, seal failure, or drift in measurement, affecting the repeatability and reliability of data. Therefore, the system’s contact parts should take materials with strong corrosion resistance such as titanium alloy, stainless steel 316L, fluoroplastic seals, or ceramic cladding and be supplemented by design methods such as sensor surface coating, potential isolation, and sealing protection to ensure long-term stable operation in complex media.

Unsteady Flow Aggravates Signal Interference and Data Distortion

Because of the rotation of the impeller, the pump cavity generally has eddy current, pulsation, and periodic disturbance of complicated flow, and it shows the typical unsteady flow characteristics. The high frequency disturbances influence the pressure sensor and the flow measurement devices so that the measured data has periodical fluctuation, which is difficult to represent the actual stable level of the pump efficiency. To solve this problem, the hydraulic test measurement system must have high speeds of data acquisition and signal processing, and must utilize technical means such as dynamic filtering, moving average, and multi-channel synchronous sampling to extract data from the stable working section and improve the representativeness and utilitarianism of the test data.

Demand for Accurate Identification of Minor Efficiency Differences

The performance of the seawater pumps will have only minor changes with different loads and speeds, especially under low load or off-design operation, the efficiency difference can be lower than one percent. If the measurement system does not have a high enough resolution or the precision of sampling is poor at this time, it will be difficult to accurately capture actual performance differences, thereby affecting the judgment of pump type advantages and disadvantages and the selection of the direction of design optimization. Therefore, the high-performance hydraulic measurement system should have high sensitivity and low noise characteristics in small signal detection and offer precise efficiency measurement capability in full operating conditions by high-precision flowmeters, differential pressure sensors, and dynamic characteristic optimization designs.

Composition and Principle of Hydraulic Measurement System

The hydraulic measurement system mainly consists of the following core components:

  • Inlet and outlet pressure sensors: to measure the static pressure difference between the outlet and inlet of the pump.
  • Flow sensors: Turbine, ultrasonic, or electromagnetic flowmeters are commonly used to obtain the fluid throughput per unit time.
  • Temperature sensors: record the temperature of the medium for correcting the water density and viscosity.
  • Data acquisition and processing unit: acquires and processes data in real time, computes hydraulic power, shaft power, and efficiency.
  • Control display system: outputs efficiency curves, working point offsets, and operation stability judgment results.

Through real-time pressure, flow, and temperature data acquisition, the hydraulic measurement system is capable of calculating the hydraulic efficiency of the pump with high precision and plotting efficiency-flow curves and head-flow curves to allow engineers to find the optimal working point of the pump and optimize the design.

Application Process of Hydraulic Measurement System in Testing

In order to accurately measure the hydraulic performance and energy efficiency indicators of the impeller during operation, the hydraulic measurement system plays an important role in experimental tests. Through real-time acquisition and analysis of the flow, pressure, and temperature core parameters, it is not only capable of plotting a complete performance curve but also providing data support for subsequent design optimization. The working procedure of the hydraulic measurement system typically includes several key steps: test preparation, operation monitoring, efficiency analysis, and data analysis, which will be described one by one in the following.

Before the test begins, meticulous preparation work needs to be done on the entire hydraulic measurement system. Firstly, have a careful check on the test object – the seawater pump or other hydraulic machinery, including the tightness of all parts connected, the firmness of installation, and checking the status of the impeller. Then, the hydraulic circuit should be properly vented to avoid potential bubble interference and inhibit unstable fluctuation of test figures. At the same time, the respective pressure, temperature, and flow sensors will be installed as needed by the tests, and calibration and system calibration will be conducted to ensure the sensors’ sensitive response and precise values. In addition, initialization configuration for the measurement and control platform, including sampling frequency, signal channel settings, and alarm threshold settings, needs to be carried out to ensure that the system has the ability of continuously and stably collecting data.

Operation Test: Real-Time Monitoring of Dynamic Changes in Key Parameters

Under the operation state, the hydraulic measurement system will start to measure a number of operating condition points. After setting the flow and rotation speed target, adjust the working conditions through the control system so that the pump can work stably under each set working condition. During this process, the system will collect and monitor in real time the key parameters such as the inlet pressure, outlet pressure, flow, medium temperature, and shaft power of the pump, and save the waveform data to the data acquisition platform through the high-speed sampling card. When the test time is long, the thermal stability and data drift of the system should also be examined to ensure the long-term effectiveness of the acquired data. For key measured parameters, alarm logic may also be set up to remind operators to log in a timely manner when sudden change or abnormal trends are discovered.

Efficiency Evaluation: Drawing Performance Curves to Find the Best Working Condition Area

After the raw data captured is filtered and averaged, it can be used to calculate the hydraulic efficiency and system efficiency of the pump. Along with flow and head data, performance curves such as “efficiency-flow” and “efficiency-rotational speed” can be graphed to help determine the operating characteristics of the impeller for each operating condition. The peak value of the efficiency curve among them is the optimum operating area (BEP), which is an important reference criterion for impeller design and selection. By contrasting multiple groups of test samples, the trends of the influences of different blade angles, channel structures, or inlet boundaries on efficiency can also be identified, and the subsequent round of structural optimization and parameter modification can be guided..

Data Analysis: The Core Support for Reverse Design Optimization

After the test is completed, the hydraulic measurement system will yield a well-structured data set for in-depth analysis by the engineers. Together with three-dimensional modeling outcomes and CFD simulation outcomes, multi-dimensional performance comparison and error attribution analysis are possible. For example, if the efficiency varies significantly at some rotational speed, it can indicate that in the design there is the problem of local flow field instability, or there is some structural issue in the gap fit between the impeller and the pump cavity. In addition, the hydraulic test system can further expand the temperature compensation module to analyze the impact of high-temperature working conditions on the performance curve and predict the work reliability of the equipment under extreme conditions. By establishing a closed process of “test-analysis-feedback-redesign”, the test data will eventually be transformed into a quantitative design decision basis to promote product iteration and optimization.

Analysis of Application Cases

In a desalination plant of seawater, a closed impeller 316L stainless steel seawater pump was used in tests of impeller efficiency. From the hydraulic measuring system, the pump flow rate at design is 800 m³/h and the head is 38 m. The test indicates that the pump efficiency at the designed flow rate is 81.5% and the variation of efficiency with off-design conditions is within ±2%. For several operating points of low efficiency, after the optimization of the impeller outlet diffusion angle, the efficiency was improved to 83.2%. In addition, the system operates stably, there was no drift within 72 hours of continuous testing, the measurement error was within ±0.5%, and the data accuracy meets the requirements of product verification and mass production.

Advantages Analysis of Hydraulic Measurement System

Comparison between hydraulic measurement system and traditional dynamometry methods:

Comparison ItemsHydraulic Measurement SystemTraditional Dynamometry Method
Measurement AccuracyHigh, error ≤±0.5%General, error up to ±1%
Response SpeedFast, suitable for dynamic condition captureSlow, suitable for steady-state measurement
Installation AdaptabilityModular design, can be embedded in different pump bodiesRequires specific devices and venues
Maintenance DifficultyLow, convenient sensor replacementHigh, regular calibration of mechanical transmission required
Applicable MediaSeawater, high-temperature water, corrosive fluidsMostly limited to clean water or oils

The high precision and fast response of the hydraulic measuring system are particularly suitable for efficiency testing of seawater pumps under complex working conditions, far superior to the traditional method.

Conclusion

As a key technical means of seawater pump impeller efficiency test, the application of hydraulic measurement systems in precision measurement and performance optimization has been widely explored. In the future, with the further development of intelligent sensing technology and data processing capabilities, hydraulic measurement systems will play a more prominent role in seawater pump testing and hydraulic component performance evaluation, promoting the green and efficient development of pump systems.

Try Kesu Now!

Upload your CAD files to get one on one support